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Step 0 in optimization

[t starts with a set S and a f:S = R. We want to compute:
T/

These fully specify the problem.

Any additional on S and f may (and should) be exploited

for but is not part of the problem.



Classical unconstrained optimization

The search space is a ,e.g., S =R"™
min f(x)
We can choose to turn R" into a (u,v) =u'v.
If f is differentiable, we have a gradf and Hessf.
We can build with them: gradient descent, Newton's...

(gradf (x),v) = Df(x)[v] = ltimf(x + tv) — f(x)

-0

gradf (xt+ tv) — gradf (x)
t

Hessf (x)[v] = D(gradf)(x)[v] = lim



This tutorial: optimization on manifolds

We target applications where S = M is a
min f (x)

We can choose to turn M into a

If f is differentiable, we have a and
We can build with them: gradient descent, Newton’s...



Fifty years

MANAGEMENT SCIENCE
Vol. 18, No. 11, July, 1972
Printed in U.8.A.

Prop 0S ed by Luenb erger in 1 9 7 2 _ THE GRADIENT PROJECTION METHOD ALONG GEODESICS*}

DAVID G. LUENBERGER

Stanford University

SIAM J. MATRIX ANAL. APPL. (€) 1998 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 303-353

Practical since the 1990s

THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY

With numerical linear algebra. ALAN EDELMANT, TO?S???;?:S,TASI\:D STEVEN T. SMITH?!
Popularized in the 2010s ,

by Absil, Mahony & Sepulchre’s book.

Becoming mainstream now.




Communications and Control Engineering
Series Editor: Alberto Isidori - Jan H. van Schuppen
Eduardo D. Sontag - Manfred Thoma - Miroslav Krstic

Constantin Udriste S100th Nonlinear
Optimization in R” ON MATRIX M4
Convex Functions and Y =
Uwe Helmke - John B. Moore Optimization Methods on
R. Brockett Editors Bicmannianitanitalds Tamés Rapesik

Mathematics and Its Applications

Optimization
and Dynamical
Systems

% " d - ---_'_':.

F-h, ABSIL, R. MAHONY & R. SEPULCHRE

1 99 4 Springer-Science+Business Mediz B.. e v S | 2 O O 8

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER
ENGINEERING - CONTROL, AUTGMATION AND ROBOTIC

Springer Series in the Data Sciences Studies in Computational Intelligence 1046

AN INTRODUCTION TO
Optimization
on Smooth
Manifolds

Nicolas Boumal ‘

- Nicko afilol Robert Simon Fong
& Hiroyuki Sato PeterTino

I Mu|tivarie Population-Based

: Optimization
Data Angly5|s on Riemannian
on Matrix Manifolds
Manifolds

(with Manopt)

@ Springer @ ipringer @ Springer
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Software, book, lectures, slides

Manopt software packages

manopt.org

Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++ |
Julia by Ronny Bergmann++ Optimization
Python by James Townsend, Niklas Koep on Smooth

Manifolds

and Sebastian Weichwald++

Book (pdf, lecture material, videos) and these slides

nicolasboumal.net/book
nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.


https://www.manopt.org/
https://www.nicolasboumal.net/book
https://www.nicolasboumal.net/SIAMOP23

How do manifolds arise in optimization?

Linear spaces Symmetry

Orthonormality

Lifts/parameterizations

Positivity

Rank Products



The goal for this tutorial

“I understand basics of
Riemannian optimization
“What’s a manifold?” geometry and algorithms.”

Main effort: building differential geometry in ~ 2 hours.

Think of it as a technically precise bird’s-eye view, focused on intuition.



What do we need?

min f (x)
X
Euclidean optimization Riemannian optimization
Basic step: Xp41 = X + X+1 = Ry, (51)
Gradient descent: = —aqggradf (x;) same, with Riemannian gradient
Newton’s method:  Hessf (x;)[s,] = —gradf (x;) and Riemannian Hessian.

(Fancier algorithms involve more substantial differences, especially in analysis.)



Today, we build the following
Hessf tools, from the ground up.

Connections Riemannian

D . Vector fields
V, o metric (u, v),

Tangent

Retractions bundle TM

What is What is

: Focus on
a smooth function? a tangent vector?

embedded
submanifolds
of linear spaces.

What is
a smooth set?




What is a manifold? Take zero: words

Let £ be a linear space (say, £ = R%).
A subset M of that linear space is a smooth manifold if,
for each pointx € M,
if we zoom very close,

it’s hard to tell whether M is linear.



What is a manifold? Take one: pictures

Yes

No



What is a manifold? Take two: examples

: R, R™X
manifold: (X e RVP: XTX = ,}
group: {X e R"™ XTX = [, and det(X) = +1}
matrices: {X € R™ " rank(X) = r}
{X e RV X = XT,X% = X, Tr(X) = p}
cone: {X ER: X =XTand X O}

{x S R""'l:xg = 1+x12+---+x,%andx0 >O}

And . if My, M, are manifolds, then M; X M, is too.



What is a manifold? Take three: math

A subset M of a linear space € of dimension dim € = d is
a of dimension dim M = n if:

For all x € M, there exists a neighborhood U of x in £, an open setV C R and

a Y: U — Vsuch that (U N M) =V N E where E is a linear
subspace of dimension n.

We call € the . u W) =V

£ = R4 1/J(x).

?7?




What is a manifold? Take four: math (bis)

A subset M of a linear space € of dimension dim € = d is
a of dimension dim M = n if:

For all x € M, there exists a neighborhood U of x in £ and a smooth function

h: U = R4 such that = {y € U: } and Dh(x) has full rank.
M
We call h a U B(U) = V
Xy L >
In words: M is locally defined by £ =R? eIl
smooth, independent equations.
Rd




Tangent vectors of M' embedded in €

c(t)—c(0)

A at x is the velocity ¢’ (0) = %in(l) - of a curve c: R - M with ¢(0) = x.

The T, M is the set of all tangent vectors of M at x.

It of the same dimension as M.

If M = {x: } with h: € = R¥ smooth and rank Dh(x) = k, then

o2 / pSEEREe:
7 h(x)=x"x—1=0
4@ s - kerDh(x) = {v:xTv = 0}

— 2



Smooth maps on/to manifolds

Let M, M’ be (smooth, embedded) submanifolds of linear spaces &, €.

Amap F: M - M'is if it has a ,i.e., if there exists a
neighborhood U of M in £ and a smooth map F: U — £’ such that

Example: a f: M — Ris smooth if it is the restriction of a smooth f: U — R.

preserves smoothness.

f:U->R
f*M - R
f="Ffln




Differential of a smooth map F: M - M’

The is the map DF (x): T, M — Tr,) M defined by:

F(c(t)) — F(x)
t

DF(x)[v] = (F 2 )'(0) = lim
where c: R - M satisfies c(0) = x and ¢’ (0) = v.

Claim: DF(x) is and , and we have a

If F is a smooth extension of F, then

: ///:E""zéztv d >

c(t)
/




Retractions: moving around on M

The is the set
TM ={(x,v):x € M and v € T, M }.

A is a map R: TM - M: (x,v) » R, (v)
such that each curve

c(t) = Ry(tv)
satisfies c(0) = x and ¢’ (0) = v.

E.g., : R,.(v) is the projection of x + v to M.

xX+v R ——

M =R"™R,(v) =x+ v; M ={x:||x|| = 1}: R, (v) = ; g —

lx+v|l R
M = {X:rank(X) = r}: Ry(V) = SVD,.(X + V). \\<(




o ?n \ ™"
I‘ a ) q 5N
. . . y - -, &9,
Riemannian manifolds IPrFOURN
W tﬁﬁfk;}
Each tangent space is a linear space. “\\5 5\ N 4 5’1‘
: (u,v), foru,v € T, M. \\t - »
A isamap V: M — TM such that V(x) is tangent at x for all x.
We say with x if x » (U(x),V (x)), is

smooth for all smooth vector fields U, V.

If the inner products vary smoothly with x, they form a

A is a smooth manifold with a Riemannian metric.



Riemannian structure and optimization

A is a smooth manifold with a smoothly varying choice of
inner product on each tangent space.

A manifold can be endowed with different Riemannian structures.

A problem rreu]\r/} f (x) is defined independently of any Riemannian structure.
X

for algorithmic purposes. Akin to



Riemannian manifolds

Let the of M be a & with metric
For example: € = R and (u,v) = u'v for all u, v € R<. o
A for M is to let:

(W, ), = (u,v).
This is well defined because u, v € T, M are, in particular, elements of £.

This is a Riemannian metric. With it, M is a of E.

I' A Riemannian submanifold is not just a submanifold that is Riemannian !!



(gradf (x),v) = Df (x)[v] = i flx +tv) — f(x)

-0 t

(Reminders for f:R% — R.)

Riemannian gradients

The of a smooth f: M — R s the vector field gradf defined by:
V(x,v) € TM, (gradf (x),v), = Df (x)|v].

Claim: gradf is a well-defined smooth vector field.

M is a Riemannian manifold of a Euclidean space &, then

gradf (x) = Proj, (gradf (x)) ,

where is the orthogonal projector from £ to T, M and f is a of f.



We're all set for gradient descent

Xk+1 = ka(_akgradf(xk))

How does f(x;4,) compare to f(x;)?
Consider a of the foR, . T,M - R:

f(R(s)) = f(x) + (gradf (x), s) + O(lIs]1)



AL f() > oo forall x € M Gradient descent on M

A2 f(R.(5)) < F() + (s, gradf (1)) + = [Is|2

Algorithm: = Ry, (—%gl‘adf(xk))

T 2L(f (Xo)—f1ow)
Complexity: [gggllgradf(xk)llxk] < \/ K

(same as Euclidean case)

A2 = f( ) < flxp) — = ||gradf(xk)||xk + ”gradf(xk)”xk

= () = f( ) = Z lgradf ()%,

- K
A1 f(x0) = fiow = f00) = fGi) = ) f(r) = f(ve1) = 57 minllgradf ()12,
k=0



_ limf(x + tv) — f(x)
t—0 ot B
Hessf (x)[v] = D(gradf)(x)[v] = ltl_r)n gradf (x + tv) — gradf (x)

Riemannian Hessians * Reminders for F:RY o R)

(gradf (x),v) = Df (x)[v]

The of f at x should be a
describing gradient change: Hessf (x): T, M — T, M.

Since gradf: M — TM is a smooth map, a natural first attempt is:

Hessf (x)[v] = Dgradf (x)[v].

, the rhs is not always in T,, M ... We need a new derivative for vector fields.

There exists a unique way to differentiate vector fields that has “desirable properties”.
This leads to the Riemannian Hessian

Hessf (x)|v] = V, gradf
being a symmetric map on T, M.



_ limf(x + tv) — f(x)
t—0 ot B
Hessf (x)[v] = D(gradf)(x)[v] = ltl_r)n gradf (x + tv) — gradf (x)

Riemannian Hessians * Reminders for F:RY o R)

(gradf (x),v) = Df (x)[v]

The of f at x should be a
describing gradient change: Hessf (x): T, M — T, M.

Since gradf: M — TM is a smooth map, a natural first attempt is:

Hessf (x)[v] = Dgradf (x)[v].

, the rhs is not always in T,, M ... We need a new derivative for vector fields.

M is a Riemannian submanifold of Euclidean space, then:

Hessf (x)[v] = Proj,(Dgradf (x)[v])

= Proj,(Hessf (x)[v]) + W (v, Proji (gradf(x)))
where W is the Weingarten map of M.



Example: Rayleigh quotient optimization

Compute the smallest eigenvalue of a symmetric matrix A € R"*" ;

min %xTAx with M = {x eRY:xTx = 1}

XEM
The cost function f: M — R is the restriction of the smooth function f(x) = %xTAx from R™ to M.
Tangent spaces T, M = {v ER x"v = 0}.
Make M into a Riemannian submanifold of R™ with {u, v) = u"v.
Projection to T, M: Proj,(z) = z— (x"z)x.
Gradient of f: gradf (x) = Ax.
Gradient of f: gradf (x) = Proj, (gradf(x)) = Ax — (xTAx)x.
Differential of gradf: ~ Dgradf (x)[v] = Av — (vTAx + xTAv)x — (xTAx)v.
Hessian of f: Hessf (x)[v] = Proj,(Dgradf (x)[v]) = Proj,(Av) — (xTAx)v.

The following are equivalent for x € M: x is a global minimizer; x is a unit-norm eigenvector of A for the least eigenvalue; gradf (x) = 0 and Hessf (x) > 0.



Enough definitions.
Hessf Now let’s use this tower.

Connections Riemannian

D . Vector fields
V, o metric (u, v),

Tangent

Retractions bundle TM

What is What is
a smooth function? a tangent vector?

What is
a smooth set?



Example:

Max-Cut with Manopt



Full example: hands on with Manopt

is a family of toolboxes for Riemannian optimization.

Go to manopt.org for code, a tutorial, a forum, and a list of other software.

Github: github.com/NicolasBoumal/manopt

Welcome to Manopt!

. T Toolboxes for optimization on manifolds and matrices
e a p l e fO r 1 A . Optimization on manifolds is a powerful igm to address i imization problems.
x — 1 With Manopt, it is easy to deal with various types of constraints and symmetries which arise naturally in
applications, such as orthonormality, low rank, positivity and invariance under group actions.

These tools are also perfectly suited for unconstrained optimization with vectors and matrices.

problem.M = spherefactory(n);

problem.cost = (@ (x) x'*A*x;

problem.egrad = @ (x) 2*A*x;

X = trustregions (problem);

With Bamdev Mishra, Lead by J. Townsend, Lead by
P.-A. Absil & R. Sepulchre N. Koep & S. Weichwald Ronny Bergmann


http://www.manopt.org/
https://github.com/NicolasBoumal/manopt

What's in a factory-produced manifold?

Example: stripped down and simplified spherefactory

function M = spherefactory(n) M.exp = (@exponential;
M.name = @ () sprintf('Sphere $S7%d', n-1); M.retr = Q(x, u) (x+u)/norm(x+u);
M.dim = @() n-1; M.invretr = @inverse retraction;
M.inner = @(x, u, v) u'*v; M.log = @logarithm;
M.norm = @(x, u) norm(u); M.hash = @(x) ['z' hashmd5(x)];
M.dist = @(x, y) real(2*asin(.5*norm(x - y))); M.rand = @() normalize (randn(n, 1));

function M = spherefactory(n)

M.inner = @ (x, u, v) u'*v;

M.proj = (@(x, u) u - x*(x'*u);

M.egrad2rgrad = M.proj;

M.ehess2rhess = (@ (x, egrad, ehess, u)

M.proj (x, ehess - (x'*egrad) *u) ;

=

.retr = @Q(x, u) (x+u)/norm (x+u) ;



Max-Cut

Input:

An undirected graph.

Output:
Vertex labels (+1, —1)
so that as many edges

as possible connect
different labels.




Goemans Williamson 1995, Burer Monteiro Zhang 2001, Journée Bach Absil Sepulchre 2010

Max-Cut

Input:

min Eaijxixj s.t. x; € {1}
An undirected graph: X150 =

adjacency matrix A. /
Output: Time-tested relaxation: _\\

Vertex labels x; € {+1, —1}
so that as many edges

Let x; be unit-norm in RP.

as possible connect
different labels.

i



Max-Cut via low-rank relaxation in Manopt

Rnxn

With adjacency matrix 4 € , want:

min
X1,.,XnERP

2 al-jxl-ij s.t. ||x;]| =1Vi
ij

The manifold is a product of n spheres:
M ={x € RP:||x]|| = 1}"
= {X e RP™||X.;|| = 1 vi}

Called the

data = load('graph20.mat');

A = data.A; n = data.n;

p = 3;

problem.M = obliquefactory(p, n);
problem.cost = @ (X) sum((X*A) .* X,
problem.egrad = @ (X) 2*X*A;
problem.ehess = @ (X, Xdot) 2*Xdot*A;

trustregions (problem) ;

sign (X'*randn(p, 1))

'all');



Active research directions by many

* More algorithms: nonsmooth, stochastic, parallel, randomized, ...
* Constrained optimization on manifolds

* Applications, old and new

* Complexity (upper and lower bounds, acceleration)

* Role of curvature

* Geodesic convexity

* Solution tracking (homotopy, continuation), bilevel, min-max

* Infeasible methods (“off-the-manifold”, still using the structure)

* Broader generalizations: boundary, varieties, lift to smooth manifold, ...

* Benign



“.. In fact, the great watershed injoptimization isn't between linearity

and nonlinearity, but CONVeXxIity land

R. T. Rockafellar, in SIAM Review, 1993




Non-convex just means not convex.




“.. In fact, the great watershed injopt

and nonlinearity, but CONVeXxIity land

zation isn't between linearity

V24

R. T. Rockafellar, { SIAM Review, 1993



Pockets of benign non-convexity: Ju Sun's list

https://sunju.org/research /nonconvex, ~900 papers in March 2021; categories:

Matrix Completion/Sensing

Tensor Recovery/Decomposition &
Hidden Variable Models

Phase Retrieval

Dictionary Learning

Deep Learning

Sparse Vectors in Linear Subspaces

Nonnegative/Sparse
Principal Component Analysis

Mixed Linear Regression
Blind Deconvolution/Calibration
Super Resolution

Synchronization Problems
Community Detection

Joint Alignment
Numerical Linear Algebra
Bayesian Inference

Empirical Risk Minimization &
Shallow Networks

System Identification

Burer-Monteiro Style Decomposition Algorithms
Generic Structured Problems

Nonconvex Feasibility Problems

Separable Nonnegative Factorization (NMF)


https://sunju.org/research/nonconvex

Back in Gottingen...

[f Riemann didn’t invent his geometry to pick Netflix movies,
then why did he?

His motivation was to extend the work of Gauss (his advisor),
' to understand curvature in spaces of arbitrary dimension.

" Bit by bit, the community is building some understanding of &
the effect curvature has in optimization. To be continued... "
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Saturday, June 3

MS311

S Oftware! b O Ok’ le ctur Riemannian Optimization - Part 111 of 111

Manopt software packages 3:15 PM - 4:45 PM
Room: Redwood B, 2nd floor

manopt.org

Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++
Julia by Ronny Bergmann++ 5 g;m;gﬁggo
Python by James Townsend, Niklas Koep on Smooth

Manifolds

and Sebastian Weichwald++

Book (pdf, lecture material, videos) and these slides

nicolasboumal.net/book
nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.


https://www.manopt.org/
https://www.nicolasboumal.net/book
https://www.nicolasboumal.net/SIAMOP23
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