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Step 0 in optimization

It starts with a set 𝑆𝑆 and a function 𝑓𝑓: 𝑆𝑆 → 𝐑𝐑. We want to compute:

min
𝑥𝑥∈𝑆𝑆

𝑓𝑓 𝑥𝑥

These bare objects fully specify the problem.

Any additional structure on 𝑆𝑆 and 𝑓𝑓 may (and should) be exploited 
for algorithmic purposes but is not part of the problem.



Classical unconstrained optimization

The search space is a linear space, e.g., 𝑆𝑆 = 𝐑𝐑𝑛𝑛:

min
𝑥𝑥∈𝐑𝐑𝑛𝑛

𝑓𝑓 𝑥𝑥

We can choose to turn 𝐑𝐑𝑛𝑛 into a Euclidean space: 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣.

If 𝑓𝑓 is differentiable, we have a gradient grad𝑓𝑓 and Hessian Hess𝑓𝑓.
We can build algorithms with them: gradient descent, Newton’s...

grad𝑓𝑓 𝑥𝑥 ,𝑣𝑣 = D𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − 𝑓𝑓 𝑥𝑥
𝑡𝑡

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = D grad𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

grad𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − grad𝑓𝑓 𝑥𝑥
𝑡𝑡



This tutorial: optimization on manifolds

We target applications where 𝑆𝑆 = ℳ is a smooth manifold:

min
𝑥𝑥∈ℳ

𝑓𝑓 𝑥𝑥

We can choose to turn ℳ into a Riemannian manifold.

If 𝑓𝑓 is differentiable, we have a Riemannian gradient and Hessian.
We can build algorithms with them: gradient descent, Newton’s...



Fifty years
Proposed by Luenberger in 1972.

Practical since the 1990s
with numerical linear algebra.

Popularized in the 2010s
by Absil, Mahony & Sepulchre’s book.

Becoming mainstream now.
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Software, book, lectures, slides
Manopt software packages
manopt.org
Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++
Julia by Ronny Bergmann++
Python by James Townsend, Niklas Koep

and Sebastian Weichwald++

Book (pdf, lecture material, videos) and these slides
nicolasboumal.net/book
nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.
2023

https://www.manopt.org/
https://www.nicolasboumal.net/book
https://www.nicolasboumal.net/SIAMOP23


How do manifolds arise in optimization?
Linear spaces

Orthonormality

Positivity

Rank

Symmetry

Lifts/parameterizations
arXiv:2207.03512, with Eitan Levin & Joe Kileel

Products



The goal for this tutorial

Main effort: building differential geometry in ~ 2 hours.

Think of it as a technically precise bird’s-eye view, focused on intuition.

“What’s a manifold?”

“I understand basics of
Riemannian optimization 

geometry and algorithms.”



Euclidean optimization Riemannian optimization

Basic step: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘 𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘

Gradient descent: 𝑠𝑠𝑘𝑘 = −𝛼𝛼𝑘𝑘grad𝑓𝑓 𝑥𝑥𝑘𝑘 same, with Riemannian gradient

Newton’s method: Hess𝑓𝑓 𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘 = −grad𝑓𝑓 𝑥𝑥𝑘𝑘 and Riemannian Hessian.

(Fancier algorithms involve more substantial differences, especially in analysis.)

What do we need?
min
𝑥𝑥
𝑓𝑓 𝑥𝑥

Euclidean optimization

Basic step: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘

Gradient descent: 𝑠𝑠𝑘𝑘 = −𝛼𝛼𝑘𝑘grad𝑓𝑓 𝑥𝑥𝑘𝑘

Newton’s method: Hess𝑓𝑓 𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘 = −grad𝑓𝑓 𝑥𝑥𝑘𝑘

(Fancier algorithms involve more substantial differences, especially in analysis.)



Today, we build the following 
tools, from the ground up.

What is
a smooth set?

What is
a tangent vector?

What is
a smooth function?

D𝐹𝐹 𝑥𝑥 𝑣𝑣 Tangent 
bundle TℳRetractions

Riemannian 
metric 𝑢𝑢, 𝑣𝑣 𝑥𝑥

Vector fieldsgrad𝑓𝑓
Connections 

∇, D
d𝑡𝑡

Hess𝑓𝑓

Focus on 
embedded 
submanifolds
of linear spaces.



What is a manifold? Take zero: words

Let ℰ be a linear space (say, ℰ = 𝐑𝐑𝑑𝑑).

A subset ℳ of that linear space is a smooth manifold if,

for each point 𝑥𝑥 ∈ ℳ,

if we zoom very close,

it’s hard to tell whether ℳ is linear.



What is a manifold? Take one: pictures

Yes

Yes

No Yes No



What is a manifold? Take two: examples

Linear spaces: 𝐑𝐑𝑛𝑛,𝐑𝐑𝑚𝑚×𝑛𝑛, …
Stiefel manifold: 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑝𝑝:𝑋𝑋⊤𝑋𝑋 = 𝐼𝐼𝑝𝑝
Rotation group: 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛:𝑋𝑋⊤𝑋𝑋 = 𝐼𝐼𝑛𝑛 and det 𝑋𝑋 = +1
Fixed-rank matrices: 𝑋𝑋 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛: rank 𝑋𝑋 = 𝑟𝑟
Grassmann manifold: 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛:𝑋𝑋 = 𝑋𝑋⊤,𝑋𝑋2 = 𝑋𝑋, Tr 𝑋𝑋 = 𝑝𝑝
Positive definite cone: 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛:𝑋𝑋 = 𝑋𝑋⊤ and 𝑋𝑋 ≻ 0
Hyperbolic space: 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛+1: 𝑥𝑥02 = 1 + 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 and 𝑥𝑥0 > 0

...
And products: if ℳ1,ℳ2 are manifolds, then ℳ1 × ℳ2 is too.



A subset ℳ of a linear space ℰ of dimension dim ℰ = 𝑑𝑑 is
a smooth embedded submanifold of dimension dim ℳ = 𝑛𝑛 if:

For all 𝑥𝑥 ∈ ℳ, there exists a neighborhood 𝑈𝑈 of 𝑥𝑥 in ℰ, an open set 𝑉𝑉 ⊆ 𝐑𝐑𝑑𝑑 and 
a diffeomorphism 𝜓𝜓:𝑈𝑈 → 𝑉𝑉 such that 𝜓𝜓 𝑈𝑈 ∩ℳ = 𝑉𝑉 ∩ 𝐸𝐸 where 𝐸𝐸 is a linear 
subspace of dimension 𝑛𝑛.

We call ℰ the embedding space.

What is a manifold? Take three: math

𝜓𝜓

ℳ

𝑈𝑈 𝜓𝜓 𝑈𝑈 = 𝑉𝑉

𝐑𝐑𝑑𝑑

ℰ ≡ 𝐑𝐑𝑑𝑑
𝑥𝑥

𝜓𝜓 𝑥𝑥

? ?



A subset ℳ of a linear space ℰ of dimension dim ℰ = 𝑑𝑑 is
a smooth embedded submanifold of dimension dim ℳ = 𝑛𝑛 if:

For all 𝑥𝑥 ∈ ℳ, there exists a neighborhood 𝑈𝑈 of 𝑥𝑥 in ℰ and a smooth function
ℎ:𝑈𝑈 → 𝐑𝐑𝑑𝑑−𝑛𝑛 such that ℳ∩𝑈𝑈 = 𝑦𝑦 ∈ 𝑈𝑈: ℎ 𝑦𝑦 = 0 and Dℎ 𝑥𝑥 has full rank.

We call ℎ a local defining function.

In words: ℳ is locally defined by
smooth, independent equations.

What is a manifold? Take four: math (bis)

𝜓𝜓

ℳ

𝑈𝑈 𝜓𝜓 𝑈𝑈 = 𝑉𝑉

𝐑𝐑𝑑𝑑

ℰ ≡ 𝐑𝐑𝑑𝑑
𝑥𝑥

𝜓𝜓 𝑥𝑥



ℳ
T𝑥𝑥ℳ

𝑥𝑥

Tangent vectors of ℳ embedded in ℰ
A tangent vector at 𝑥𝑥 is the velocity 𝑐𝑐′ 0 = lim

𝑡𝑡→0
𝑐𝑐 𝑡𝑡 −𝑐𝑐 0

𝑡𝑡
of a curve 𝑐𝑐:𝐑𝐑 →ℳ with 𝑐𝑐 0 = 𝑥𝑥.

The tangent space T𝑥𝑥ℳ is the set of all tangent vectors of ℳ at 𝑥𝑥.
It is a linear subspace of ℰ of the same dimension as ℳ.

If ℳ = 𝑥𝑥:ℎ 𝑥𝑥 = 0 with ℎ:ℰ → 𝐑𝐑𝑘𝑘 smooth and rank Dℎ 𝑥𝑥 = 𝑘𝑘, then T𝑥𝑥ℳ = ker Dℎ 𝑥𝑥 .

ℎ 𝑥𝑥 = 𝑥𝑥⊤𝑥𝑥 − 1 = 0
ker Dℎ 𝑥𝑥 = 𝑣𝑣: 𝑥𝑥⊤𝑣𝑣 = 0

ℰ ⊇ ℳ 𝑥𝑥 𝑣𝑣

𝑐𝑐(𝑡𝑡)



Smooth maps on/to manifolds
Let ℳ,ℳ′ be (smooth, embedded) submanifolds of linear spaces ℰ,ℰ′.

A map 𝐹𝐹:ℳ →ℳ′ is smooth if it has a smooth extension, i.e., if there exists a 
neighborhood 𝑈𝑈 of ℳ in ℰ and a smooth map �𝐹𝐹:𝑈𝑈 → ℰ′ such that 𝐹𝐹 = �𝐹𝐹|ℳ .

Example: a cost function 𝑓𝑓:ℳ → 𝐑𝐑 is smooth if it is the restriction of a smooth ̅𝑓𝑓:𝑈𝑈 → 𝐑𝐑.

Composition preserves smoothness.

̅𝑓𝑓:𝑈𝑈 → 𝐑𝐑

𝑈𝑈

𝐑𝐑
ℳ

ℰ
𝑓𝑓:ℳ → 𝐑𝐑

𝑓𝑓 = ̅𝑓𝑓|ℳ



Differential of a smooth map 𝐹𝐹:ℳ →ℳ′

The differential of 𝐹𝐹 at 𝑥𝑥 is the map D𝐹𝐹 𝑥𝑥 : T𝑥𝑥ℳ → T𝐹𝐹 𝑥𝑥 ℳ′ defined by:

D𝐹𝐹 𝑥𝑥 𝑣𝑣 = 𝐹𝐹 ∘ 𝑐𝑐 ′ 0 = lim
𝑡𝑡→0

𝐹𝐹 𝑐𝑐 𝑡𝑡 − 𝐹𝐹 𝑥𝑥
𝑡𝑡

where 𝑐𝑐:𝐑𝐑 →ℳ satisfies 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

Claim: D𝐹𝐹 𝑥𝑥 is well defined and linear, and we have a chain rule.
If �𝐹𝐹 is a smooth extension of 𝐹𝐹, then D𝐹𝐹 𝑥𝑥 = D �𝐹𝐹 𝑥𝑥 |T𝑥𝑥ℳ .

ℳ′

𝑥𝑥 𝑣𝑣

𝑐𝑐(𝑡𝑡)

ℳ 𝐹𝐹 𝑥𝑥

D𝐹𝐹 𝑥𝑥 𝑣𝑣

𝐹𝐹 𝑐𝑐 𝑡𝑡𝐹𝐹



Retractions: moving around on ℳ
The tangent bundle is the set

Tℳ = 𝑥𝑥, 𝑣𝑣 : 𝑥𝑥 ∈ ℳ and 𝑣𝑣 ∈ T𝑥𝑥ℳ .
Claim: Tℳ is a smooth manifold embedded in ℰ × ℰ.

A retraction is a smooth map 𝑅𝑅: Tℳ →ℳ: 𝑥𝑥, 𝑣𝑣 ↦ 𝑅𝑅𝑥𝑥 𝑣𝑣
such that each curve

𝑐𝑐 𝑡𝑡 = 𝑅𝑅𝑥𝑥 𝑡𝑡𝑣𝑣
satisfies 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

E.g., metric projection: 𝑅𝑅𝑥𝑥 𝑣𝑣 is the projection of 𝑥𝑥 + 𝑣𝑣 to ℳ.
ℳ = 𝐑𝐑𝑛𝑛: 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑥𝑥 + 𝑣𝑣;              ℳ = 𝑥𝑥: 𝑥𝑥 = 1 : 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑥𝑥+𝑣𝑣

𝑥𝑥+𝑣𝑣
;

ℳ = 𝑋𝑋: rank 𝑋𝑋 = 𝑟𝑟 : 𝑅𝑅𝑋𝑋 𝑉𝑉 = SVD𝑟𝑟 𝑋𝑋 + 𝑉𝑉 .

𝑥𝑥

𝑣𝑣

𝑥𝑥 + 𝑣𝑣
𝑥𝑥 + 𝑣𝑣



Riemannian manifolds

Each tangent space T𝑥𝑥ℳ is a linear space.
Endow each one with an inner product: 𝑢𝑢, 𝑣𝑣 𝑥𝑥 for 𝑢𝑢, 𝑣𝑣 ∈ T𝑥𝑥ℳ.

A vector field is a map 𝑉𝑉:ℳ → Tℳ such that 𝑉𝑉 𝑥𝑥 is tangent at 𝑥𝑥 for all 𝑥𝑥.
We say the inner products ⋅,⋅ 𝑥𝑥 vary smoothly with 𝑥𝑥 if 𝑥𝑥 ↦ 𝑈𝑈 𝑥𝑥 ,𝑉𝑉 𝑥𝑥 𝑥𝑥 is 
smooth for all smooth vector fields 𝑈𝑈,𝑉𝑉.

If the inner products vary smoothly with 𝑥𝑥, they form a Riemannian metric.

A Riemannian manifold is a smooth manifold with a Riemannian metric.



Riemannian structure and optimization

A Riemannian manifold is a smooth manifold with a smoothly varying choice of 
inner product on each tangent space.

A manifold can be endowed with many different Riemannian structures.

A problem min
𝑥𝑥∈ℳ

𝑓𝑓 𝑥𝑥 is defined independently of any Riemannian structure.

We choose a metric for algorithmic purposes. Akin to preconditioning.



ℳ
T𝑥𝑥ℳ

𝑥𝑥

Riemannian submanifolds
Let the embedding space of ℳ be a Euclidean space ℰ with metric ⋅,⋅ .
For example: ℰ = 𝐑𝐑𝑑𝑑 and 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣 for all 𝑢𝑢, 𝑣𝑣 ∈ 𝐑𝐑𝑑𝑑 .

A convenient choice of Riemannian structure for ℳ is to let:

𝑢𝑢, 𝑣𝑣 𝑥𝑥 = 𝑢𝑢, 𝑣𝑣 .

This is well defined because 𝑢𝑢, 𝑣𝑣 ∈ T𝑥𝑥ℳ are, in particular, elements of ℰ.

This is a Riemannian metric. With it, ℳ is a Riemannian submanifold of ℰ.

!! A Riemannian submanifold is not just a submanifold that is Riemannian !!



Riemannian gradients
The Riemannian gradient of a smooth 𝑓𝑓:ℳ → 𝐑𝐑 is the vector field grad𝑓𝑓 defined by:

∀ 𝑥𝑥, 𝑣𝑣 ∈ Tℳ, grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥 = D𝑓𝑓 𝑥𝑥 𝑣𝑣 .

Claim: grad𝑓𝑓 is a well-defined smooth vector field.

If ℳ is a Riemannian submanifold of a Euclidean space ℰ, then

grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 grad ̅𝑓𝑓 𝑥𝑥 ,

where Proj𝑥𝑥 is the orthogonal projector from ℰ to T𝑥𝑥ℳ and ̅𝑓𝑓 is a smooth extension of 𝑓𝑓.

grad ̅𝑓𝑓 𝑥𝑥 ,𝑣𝑣 = D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

(Reminders for ̅𝑓𝑓:𝐑𝐑𝑑𝑑 → 𝐑𝐑.)



We’re all set for gradient descent

𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 −𝛼𝛼𝑘𝑘grad𝑓𝑓 𝑥𝑥𝑘𝑘

How does 𝑓𝑓 𝑥𝑥𝑘𝑘+1 compare to 𝑓𝑓 𝑥𝑥𝑘𝑘 ?

Consider a Taylor expansion of the pullback 𝑓𝑓 ∘ 𝑅𝑅𝑥𝑥: T𝑥𝑥ℳ → 𝐑𝐑:

𝑓𝑓 𝑅𝑅𝑥𝑥 𝑠𝑠 = 𝑓𝑓 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 , 𝑠𝑠 𝑥𝑥 + 𝑂𝑂 𝑠𝑠 𝑥𝑥
2



𝑥𝑥

𝑅𝑅𝑥𝑥 𝑠𝑠

𝑠𝑠

A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ ℳ

A2 𝑓𝑓 𝑅𝑅𝑥𝑥 𝑠𝑠 ≤ 𝑓𝑓 𝑥𝑥 + 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 𝑥𝑥 + 𝐿𝐿
2
𝑠𝑠 𝑥𝑥

2

Algorithm: 𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)

Complexity: min
𝑘𝑘<𝐾𝐾

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 −𝑓𝑓low
𝐾𝐾

(same as Euclidean case)

A2 ⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≤ 𝑓𝑓 𝑥𝑥𝑘𝑘 −
1
𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2 +

1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2

𝐀𝐀𝐀𝐀 ⇒ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low ≥ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓 𝑥𝑥𝐾𝐾 = �
𝑘𝑘=0

𝐾𝐾−1

𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
𝐾𝐾
2𝐿𝐿

min
𝑘𝑘<𝐾𝐾

grad𝑓𝑓 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘
2

Gradient descent on ℳ



Riemannian Hessians
The Riemannian Hessian of 𝑓𝑓 at 𝑥𝑥 should be a symmetric linear map
describing gradient change: Hess𝑓𝑓 𝑥𝑥 : T𝑥𝑥ℳ → T𝑥𝑥ℳ.

Since grad𝑓𝑓:ℳ → Tℳ is a smooth map, a natural first attempt is:

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 =? Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 .

However, the rhs is not always in T𝑥𝑥ℳ… We need a new derivative for vector fields.

Fundamental theorem of Riemannian geometry:

grad ̅𝑓𝑓 𝑥𝑥 ,𝑣𝑣 = D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = D grad ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

grad ̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − grad ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

(Reminders for ̅𝑓𝑓:𝐑𝐑𝑑𝑑 → 𝐑𝐑.)

There exists a unique way to differentiate vector fields that has “desirable properties”. 
This Riemannian connection ∇ leads to the Riemannian Hessian

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = ∇𝑣𝑣grad𝑓𝑓
being a symmetric map on T𝑥𝑥ℳ.



Riemannian Hessians
The Riemannian Hessian of 𝑓𝑓 at 𝑥𝑥 should be a symmetric linear map
describing gradient change: Hess𝑓𝑓 𝑥𝑥 : T𝑥𝑥ℳ → T𝑥𝑥ℳ.

Since grad𝑓𝑓:ℳ → Tℳ is a smooth map, a natural first attempt is:

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 =? Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 .

However, the rhs is not always in T𝑥𝑥ℳ… We need a new derivative for vector fields.

If ℳ is a Riemannian submanifold of Euclidean space, then:

where 𝑊𝑊 is the Weingarten map of ℳ.

grad ̅𝑓𝑓 𝑥𝑥 ,𝑣𝑣 = D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = D grad ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

grad ̅𝑓𝑓 𝑥𝑥 + 𝑡𝑡𝑣𝑣 − grad ̅𝑓𝑓 𝑥𝑥
𝑡𝑡

(Reminders for ̅𝑓𝑓:𝐑𝐑𝑑𝑑 → 𝐑𝐑.)

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = Proj𝑥𝑥 Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣
= Proj𝑥𝑥 Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 + 𝑊𝑊 𝑣𝑣, Proj𝑥𝑥⊥ grad ̅𝑓𝑓 𝑥𝑥



Compute the smallest eigenvalue of a symmetric matrix 𝐴𝐴 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛 :

min
𝑥𝑥∈ℳ

1
2𝑥𝑥

⊤𝐴𝐴𝑥𝑥 with      ℳ = 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛: 𝑥𝑥⊤𝑥𝑥 = 1

The cost function 𝑓𝑓:ℳ → 𝐑𝐑 is the restriction of the smooth function ̅𝑓𝑓 𝑥𝑥 = 1
2𝑥𝑥

⊤𝐴𝐴𝑥𝑥 from 𝐑𝐑𝑛𝑛 to ℳ.
Tangent spaces T𝑥𝑥ℳ = 𝑣𝑣 ∈ 𝐑𝐑𝑛𝑛: 𝑥𝑥⊤𝑣𝑣 = 0 .
Make ℳ into a Riemannian submanifold of 𝐑𝐑𝑛𝑛 with 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣.
Projection to T𝑥𝑥ℳ: Proj𝑥𝑥 𝑧𝑧 = 𝑧𝑧 − 𝑥𝑥⊤𝑧𝑧 𝑥𝑥.
Gradient of ̅𝑓𝑓: grad ̅𝑓𝑓 𝑥𝑥 = 𝐴𝐴𝑥𝑥.

Gradient of 𝑓𝑓: grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 grad ̅𝑓𝑓 𝑥𝑥 = 𝐴𝐴𝑥𝑥 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 𝑥𝑥.

Differential of grad𝑓𝑓: Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 = 𝐴𝐴𝑣𝑣 − 𝑣𝑣⊤𝐴𝐴𝑥𝑥 + 𝑥𝑥⊤𝐴𝐴𝑣𝑣 𝑥𝑥 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 𝑣𝑣.
Hessian of 𝑓𝑓: Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = Proj𝑥𝑥 Dgrad𝑓𝑓 𝑥𝑥 𝑣𝑣 = Proj𝑥𝑥 𝐴𝐴𝑣𝑣 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 𝑣𝑣.

Example: Rayleigh quotient optimization

The following are equivalent for 𝑥𝑥 ∈ ℳ: 𝑥𝑥 is a global minimizer; 𝑥𝑥 is a unit-norm eigenvector of 𝐴𝐴 for the least eigenvalue; grad𝑓𝑓 𝑥𝑥 = 0 and Hess𝑓𝑓 𝑥𝑥 ≽ 0.



Enough definitions.
Now let’s use this tower.

What is
a smooth set?

What is
a tangent vector?

What is
a smooth function?

D𝐹𝐹 𝑥𝑥 𝑣𝑣 Tangent 
bundle TℳRetractions

Riemannian 
metric 𝑢𝑢, 𝑣𝑣 𝑥𝑥

Vector fieldsgrad𝑓𝑓
Connections 

∇, D
d𝑡𝑡

Hess𝑓𝑓



Example:

Max-Cut with Manopt
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Full example: hands on with Manopt
Manopt is a family of toolboxes for Riemannian optimization.
Go to manopt.org for code, a tutorial, a forum, and a list of other software.
Github: github.com/NicolasBoumal/manopt

Matlab example for min
𝑥𝑥 =1

𝑥𝑥⊤𝐴𝐴𝑥𝑥:

problem.M = spherefactory(n);

problem.cost = @(x) x'*A*x;

problem.egrad = @(x) 2*A*x;

x = trustregions(problem);

With Bamdev Mishra,
P.-A. Absil & R. Sepulchre

Lead by J. Townsend,
N. Koep & S. Weichwald

Lead by
Ronny Bergmann

http://www.manopt.org/
https://github.com/NicolasBoumal/manopt


What’s in a factory-produced manifold?
Example: stripped down and simplified spherefactory

function M = spherefactory(n)

M.name = @() sprintf('Sphere S^%d', n-1);

M.dim = @() n-1;

M.inner = @(x, u, v) u'*v;

M.norm = @(x, u) norm(u);

M.dist = @(x, y) real(2*asin(.5*norm(x - y)));

M.typicaldist = @() pi;

M.proj = @(x, u) u - x*(x'*u);

M.tangent = M.proj;

M.tangent2ambient_is_identity = true;

M.tangent2ambient = @(x, u) u;

M.egrad2rgrad = M.proj;

M.ehess2rhess = @(x, egrad, ehess, u) ...

M.proj(x, ehess - (x'*egrad)*u);

M.exp = @exponential;

M.retr = @(x, u) (x+u)/norm(x+u);

M.invretr = @inverse_retraction;

M.log = @logarithm;

M.hash = @(x) ['z' hashmd5(x)];

M.rand = @() normalize(randn(n, 1));

M.randvec = @(x) normalize(M.proj(x, randn(n, 1)));

M.zerovec = @(x) zeros(n, 1);

M.lincomb = @matrixlincomb;

M.transp = @(x, y, u) M.proj(y, u);

M.vec = @(x, u_mat) u_mat;

M.mat = @(x, u_vec) reshape(u_vec, [n, 1]);

M.vecmatareisometries = @() true;

...

end

function M = spherefactory(n)
M.inner = @(x, u, v) u'*v;
M.proj = @(x, u) u - x*(x'*u);
M.egrad2rgrad = M.proj;
M.ehess2rhess = @(x, egrad, ehess, u) ...

M.proj(x, ehess - (x'*egrad)*u);
M.retr = @(x, u) (x+u)/norm(x+u);



Max-Cut

Input:
An undirected graph.

Output:
Vertex labels (+1, −1)
so that as many edges
as possible connect
different labels.



Max-Cut

Input:
An undirected graph:
adjacency matrix 𝐴𝐴.

Output:
Vertex labels 𝑥𝑥𝑖𝑖 ∈ {+1, −1}
so that as many edges
as possible connect
different labels.

min
𝑥𝑥1,…,𝑥𝑥𝑛𝑛

�
𝑖𝑖𝑗𝑗

𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 s. t. 𝑥𝑥𝑖𝑖 ∈ ±1

Time-tested relaxation:

Let 𝑥𝑥𝑖𝑖 be unit-norm in 𝐑𝐑𝑝𝑝.

Goemans Williamson 1995, Burer Monteiro Zhang 2001, Journée Bach Absil Sepulchre 2010



Max-Cut via low-rank relaxation in Manopt

With adjacency matrix 𝐴𝐴 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛, want:

min
𝑥𝑥1,…,𝑥𝑥𝑛𝑛∈𝐑𝐑𝑝𝑝

�
𝑖𝑖𝑗𝑗

𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖⊤𝑥𝑥𝑗𝑗 s. t. 𝑥𝑥𝑖𝑖 = 1 ∀𝑖𝑖

The manifold is a product of 𝑛𝑛 spheres:

ℳ = 𝑥𝑥 ∈ 𝐑𝐑𝑝𝑝: 𝑥𝑥 = 1 𝑛𝑛

≡ 𝑋𝑋 ∈ 𝐑𝐑𝑝𝑝×𝑛𝑛: 𝑋𝑋:,𝑖𝑖 = 1 ∀𝑖𝑖

Called the oblique manifold.

data = load('graph20.mat');

A = data.A; n = data.n;

p = 3;

problem.M = obliquefactory(p, n);

problem.cost = @(X) sum((X*A) .* X, 'all');

problem.egrad = @(X) 2*X*A;

problem.ehess = @(X, Xdot) 2*Xdot*A;

X = trustregions(problem);

s = sign(X'*randn(p, 1)); %rand round



Active research directions by many
• More algorithms: nonsmooth, stochastic, parallel, randomized, ...
• Constrained optimization on manifolds
• Applications, old and new
• Complexity (upper and lower bounds, acceleration)
• Role of curvature
• Geodesic convexity
• Solution tracking (homotopy, continuation), bilevel, min-max
• Infeasible methods (“off-the-manifold”, still using the structure)
• Broader generalizations: boundary, varieties, lift to smooth manifold, …
• Benign non-convexity
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“… in fact, the great watershed in  optimization isn't between linearity  

and nonlinearity, but convexity and non-convexity.”

R. T. Rockafellar, in SIAM Review, 1993



𝑥𝑥

Non-convex just means not convex.
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“… in fact, the great watershed in  optimization isn't between linearity  

and nonlinearity, but convexity and non-convexity.”

R. T. Rockafellar, in SIAM Review, 1993



Pockets of benign non-convexity: Ju Sun’s list
https://sunju.org/research/nonconvex, ~900 papers in March 2021; categories:

Matrix Completion/Sensing
Tensor Recovery/Decomposition &
Hidden Variable Models
Phase Retrieval
Dictionary Learning
Deep Learning
Sparse Vectors in Linear Subspaces
Nonnegative/Sparse
Principal Component Analysis
Mixed Linear Regression
Blind Deconvolution/Calibration
Super Resolution

Synchronization Problems
Community Detection
Joint Alignment
Numerical Linear Algebra
Bayesian Inference
Empirical Risk Minimization &
Shallow Networks
System Identification
Burer-Monteiro Style Decomposition Algorithms
Generic Structured Problems
Nonconvex Feasibility Problems
Separable Nonnegative Factorization (NMF)

https://sunju.org/research/nonconvex


Back in Göttingen...

If Riemann didn’t invent his geometry to pick Netflix movies,
then why did he?

His motivation was to extend the work of Gauss (his advisor),
to understand curvature in spaces of arbitrary dimension.

Bit by bit, the community is building some understanding of
the effect curvature has in optimization. To be continued…



Software, book, lectures, slides
Manopt software packages
manopt.org
Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++
Julia by Ronny Bergmann++
Python by James Townsend, Niklas Koep

and Sebastian Weichwald++

Book (pdf, lecture material, videos) and these slides
nicolasboumal.net/book
nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.
2023

https://www.manopt.org/
https://www.nicolasboumal.net/book
https://www.nicolasboumal.net/SIAMOP23



	A tutorial on�Riemannian optimization�Context, geometry, algorithms, resources
	Slide Number 2
	Step 0 in optimization
	Classical unconstrained optimization
	This tutorial: optimization on manifolds
	Fifty years
	Slide Number 7
	Software, book, lectures, slides
	How do manifolds arise in optimization?
	The goal for this tutorial
	What do we need?
	Today, we build the following tools, from the ground up.
	What is a manifold? Take zero: words
	What is a manifold? Take one: pictures
	What is a manifold? Take two: examples
	What is a manifold? Take three: math
	What is a manifold? Take four: math (bis)
	Tangent vectors of ℳ embedded in ℰ
	Smooth maps on/to manifolds
	Differential of a smooth map 𝐹:ℳ→ℳ′
	Retractions: moving around on ℳ
	Riemannian manifolds
	Riemannian structure and optimization
	Riemannian submanifolds
	Riemannian gradients
	We’re all set for gradient descent
	Gradient descent on ℳ
	Riemannian Hessians
	Riemannian Hessians
	Example: Rayleigh quotient optimization
	Enough definitions.�Now let’s use this tower.
	Slide Number 32
	Full example: hands on with Manopt
	What’s in a factory-produced manifold?� Example: stripped down and simplified spherefactory
	Max-Cut
	Max-Cut
	Max-Cut via low-rank relaxation in Manopt
	Active research directions by many
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Pockets of benign non-convexity: Ju Sun’s list� https://sunju.org/research/nonconvex, ~900 papers in March 2021; categories:
	Back in Göttingen...
	Software, book, lectures, slides
	Slide Number 45

